ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration TESA ASSA ABLOY

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-ASA-20150164-IBA1-EN

Issue date 10.06.2015
Valid to 09.06.2020

Access control systems – SMARTair Cylinder TESA ASSA ABLOY

www.bau-umwelt.com / https://epd-online.com

TESA ASSA ABLOY

General Information

Programme holder

IBU - Institut Bauen und Umwelt e.V.

Panoramastr. 1 10178 Berlin

Germany

Declaration number

EPD-ASA-20150164-IBA1-EN

This Declaration is based on the Product Category Rules:

IBU: PCR Electronic Access Control Systems, 11-2013 (PCR tested and approved by the independent expert committee (SVA))

Issue date

10.06.2015

Valid to

09.06.2020

Prof. Dr.-Ing. Horst J. Bossenmayer
(President of Institut Bauen und Umwelt e.V.)

Dr.-Ing. Burkhart Lehmand (Managing Director IBU)

SMARTair Cylinder

Owner of the Declaration TESA ASSA ABLOY B^o Ventas, 35 20305 Irun, Gipuzkoa

SPAIN

Declared product / Declared unit

This Declaration represents 1 piece of SMARTair Cylinder

Scope:

This declaration and its LCA study are relevant to SMARTair Cylinder

Main primary manufacturing processes are made by external suppliers and the final manufacturing processes and assembly occur at our manufacturing factory in TESA, Spain. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Standard EN 15804 serves as the core PCR

Independent verification of the declaration and data according to ISO 14025

internally

externally

2. Product

2.1 Product description

The SMARTair Cylinder, produced by TESA, an ASSA ABLOY Group brand, is a device that communicates with a personalized credential via RF technology. It collects identity information from the credential and passes it along to a secured control unit. The control unit then grants or denies access to the credential holder engaging the clutch of the cylinder allowing it to open the door. It is capable of communications using a high frequency RF signal and able to communicate with several credential formats.

Supported credential formats:

- iCLASS SE (Cards/Tags/Fobs)
- SE for DESFire EV1 (Cards)
- SE for MIFARE Classic (Cards/Tags/Fobs)
- NFC compatible
- ISO/IEC 15693

2.2 Application

The SMARTair Cylinder is suitable for indoor and outdoor use, where ID authentication is required. Common applications include: Commercial buildings, Industrial buildings, Government buildings, Military installations, Education establishments, Healthcare

buildings.

2.3 Technical Data

The table presents the technical properties of SMARTair Cylinder:

Technical data

Name	Value	Unit
Power supply	3VDC	V
Current Requirements	100mA	Α
Operating Temperature	-20 to 70	°C
Operating Humidity	up to 85	%
Power consumption (standby)	3	μW
Peak Power Draw (During read)	100	mW

2.4 Placing on the market / Application rules

EMC Directive 2004/108/CE LV Directive 2006/95/CE R&TTE Directive 1999/05/CE ROHS Directive 2011/65/CE

IP 56 Certified

Fire resistance /UNE-EN 1634:2000/ 30' - 60'

ASSA ABLOY

2.5 Delivery status

Each knob unit is delivered individually packaged with mounting hardware, and gasket. Packing dimensions: 120mm x 90mm x 50mm

2.6 Base materials / Ancillary materials

The average composition of the SMARTair Cylinder is as following:

Component	Percentage in mass
Brass	33.14
Plastic Parts	5.12
Stainless Steel	15.29
Steel	26.42
Electronic	0.61
Electro mechanics	18.74
Total	100.0

2.7 Manufacture

The SMARTair Cylinder is assembled at the production facility at TESA, Irun. The electronics are produced in China/Malaysia and the mechanics in Germany. The components come from processes like stamped steel, turning, zinc and steel casting.

The factory of TESA has a certification of Quality Management system in accordance with /ISO 9001:1994/.

2.8 Environment and health during manufacturing

ASSA ABLOY is committed to producing and distributing door opening solutions with minimal environmental impact, where health & safety is the primary focus for all employees and associates.

- Environmental operations, GHG, energy, water, waste, VOC, surface treatment and H&S are being routinely monitored. Inspections, audits, and reviews are conducted periodically to ensure that applicable standards are met and environmental management program effectiveness is evaluated.
- Code of Conduct covers human rights, labor practices and decent work. Management of ASSA ABLOY is aware of their environmental roles and responsibilities, providing appropriate training, supporting accountability and recognizing outstanding performance.
- The factory of TESA has certification of Environmental Management to /ISO 14001:1999/.
- Any waste metals during machining are separated and recycled. The waste from the water-based painting process is delivered to waste treatment plant.

2.9 Product processing/Installation

SMARTair Cylinders are installed by trained product integrators or by the product end user. Installation instructions are included with each unit.

2.10 Packaging

The cylinder is packed in a carton box with foam spacers to avoid damage. Also included in the packaging are paper installation instructions, the gasket, and a plastic bag containing the connectors and mounting hardware. Packaging materials shall be collected separately for recycling.

Material	Value (%)
Cardboard/paper	28.3
Plastic	71.7
Total	100.0

2.11 Condition of use

No auxiliary or consumable materials are incurred for maintenance and usage of the reader. Repairs or replacement are not usually necessary. No cleaning efforts need to be taken into consideration.

2.12 Environment and health during use

There are no interactions between products, the environment and health.

2.13 Reference service life

Approved for a conservative value of 400.000 cycles under normal working conditions, that means 15 years depending on cycle frequency.

2.14 Extraordinary effects

Fire

Suitable for use in fire and smoke doors /EN 1634:2000/.

Water

Contain no substances that have any impact on water in case of flood. Electric operation of the device will be influenced negative.

Mechanical destruction

No danger to the environment can be anticipated during mechanical destruction.

2.15 Re-use phase

The product is possible to re-use during the reference service life and be moved to one door to another. Waste codes according to European Waste Catalogue /EWC/ and Hazardous Waste List -Valid from 1 January 2002;

/EWC/ 16 02 13* discarded equipment containing hazardous components other than those mentioned in 16 02 09 to 16 02 12

/EWC/ 17 02 03 plastic

/EWC/ 17 04 01 copper, bronze, brass

/EWC/ 17 04 05 iron and steel

/EWC/ 17 04 11 Cables with the exception of those outlined in 17 04 10

Disposal of the product is subject to the /WEEE/ Directive within Europe, Directive 2012/19/EU.

2.16 Disposal

No disposal is foreseen for the product nor for the corresponding packaging.

2.17 Further information

More information on TESA ASSA ABLOY SMARTair Cylinders is available from:

TESA ASSA ABLOY Bº Ventas, 35 20305 Irun, Gipuzkoa SPAIN Tel: +34 943669100

Tel: +34 943669100 Internet: www.tesa.es

3. LCA: Calculation rules

3.1 Declared Unit

The declaration refers to the functional unit of 1 piece of SMARTair Cylinder as specified in Part B requirements on the EPD for Electronic Access Control Systems /IBU PCR Part B/.

Declared unit

Name	Value	Unit
Declared unit	1	piece of SMARTair Cylinder
Mass of product (without packaging)	0.293	kg
Conversion factor to 1 kg	3.413	-

3.2 System boundary

Type of the EPD: cradle to gate - with options The following life cycle phases were considered for Reader:

A1-A3 Production stage:

- A1 Raw material extraction and processing
- A2 Transport to the manufacturer and
- A3 Manufacturing.

Construction stage:

- A4 Transport from the gate to the site
- A5 Packaging waste processing

Use stage related to the operation of the building includes:

 B6 – Operational energy use (Energy consumption for lock operation)

End-of-life stage:

- C2 Transport to waste processing,
- C3 Waste processing for recycling and
- C4 Disposal (landfill).

These information modules include provision and transport of all materials, products, as well as energy and water provisions, waste processing up to the end-of-waste state or disposal of final residues.

Module D:

 Declaration of all benefits or recycling potential from EoL and A5

3.3 Estimates and assumptions

Use phase:

For the use phase, it is assumed that the lock is used in the European Union, thus an European electricity grid mix is considered within this stage.

EoL:

In the End-of-Life phase, for all the materials which can be recycled, a recycling scenario with 100% collection rate was assumed.

3.4 Cut-off criteria

In the assessment, all available data from the production process are considered, i.e. all raw materials used, auxiliary materials (e.g. lubricants), thermal energy consumption and electric power consumption - including material and energy flows contributing less than 1% of mass or energy (if available). In case a specific flow contributing less than 1% in mass or energy is not available, worst case assumption proxies are selected to represent the respective environmental impacts.

Impacts relating to the production of machines and facilities required during production are out of the scope of this assessment.

3.5 Background data

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used /GaBi 6 2013/. The GaBi-database contains consistent and documented datasets which are documented in the online

GaBi-documentation /GaBi 6 2013D/.

To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

3.6 Data quality

The requirements for data quality and background data correspond to the specifications of the /IBU PCR Part A/.

PE INTERNATIONAL performed a variety of tests and checks during the entire project to ensure high quality of the completed project. This obviously includes an extensive review of project-specific LCA models as well as the background data used.

The technological background of the collected data reflects the physical reality of the declared products. The datasets are complete and conform to the system boundaries and the criteria for the exclusion of inputs and outputs.

All relevant background datasets are taken from the GaBi 6 software database. The last revision of the used background data has taken place not longer than 10 years ago.

3.7 Period under review

The period under review is 2012/13 (12 month average).

3.8 Allocation

Regarding incineration, the software model for the waste incineration plant (WIP) is adapted according to the material composition and heating value of the combusted material. Following specific life cycle inventories for the WIP are considered:

- Waste incineration of plastic
- Waste incineration of paper
- Waste incineration of electronic scraps (PWB)

ASSA ABLOY

Regarding the recycling material of metals, the metal parts in the EoL are declared as end-of-waste status. Thus, these materials are considered in module D. Specific information on allocation within the background data is given in the GaBi dataset documentation.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Transport to the building site (A4)

Transport to the banding one (A+)												
Name	Value	Unit										
Truck transport												
Litres of fuel diesel with maximum load (27 t payload)	39.4	l/100 km										
Transport distance truck	500	km										
Capacity utilization (incl. empty runs) of truck	85	%										

Installation into the building (A5)

	, '	
Name	Value	Unit
Output substances following		
waste treatment on site: paper	0.0083	kg
packaging		
Output substances following		
waste treatment on site: plastic	0.021	kg
packaging		

Reference service life

Name	Value	Unit
Reference service life	15	а

Operational energy use (B6)

- por an orien gy aloc (= 0)		
Name	Value	Unit
Electricity consumption	0.113	kWh
Days per year in use	365	d
Hours per day in different modes	24	h
Power consumption on mode	0.1	W
Power consumption stand-by mode	0.00003	W

End of life (C1-C4)

Name	Value	Unit
Collected separately Brass, Copper, Plastic Parts, Stainless Steel, Steel, Electronic, Electro mechanics	0.293	kg
Reuse plastic parts	0.015	kg
Recycling metals from electronic	0.0567	kg
Recycling Brass	0.0971	kg
Recycling Copper	0.002	kg
Recycling Stainless Steel	0.0448	kg
Recycling Steel	0.0774	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Collected separately waste Card reader (including packaging)	0.293	kg
Recycling Brass	30.13	%
Recycling Copper	0.62	%
Recycling/Reuse Electronic	17.59	%
Recycling Stainless Steel	13.9	%
Recycling Steel	24.01	%
Reuse Plastic parts	4.65	%
Reuse Paper packaging	2.58	%
Reuse Plastic packaging	6.52	%

5. LCA: Results

Results shown below were calculated using CML 2000 – Apr. 2013 Methodology

DESC	CRIPT	RIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; I										; MN	D =	MOD	ULE N	ОТ	DECL	ARED)				
			CONST	RUCTI											EFITS AND OADS							
PROI	DUCT	STAGE	ON PRO	CESS			U	SE ST	AGE				ENI	O OF LI	FE STA	GE.	BEY	OND THE				
			STA	GE														YSTEM JNDARYS				
			Θ							<u> </u>	_				D							
ial		ng	ansport from th gate to the site			9		Replacement ¹⁾	Refurbishment ¹⁾)er	/ate	De-construction	_		ssin							
Raw material supply	Transport	Manufacturing	fror e s	Assembly	a)	Maintenance	j.	l e	me	e e	<u>, a</u>	<u>. 2</u>	demolition	Transport	Çes	Disposal	ž þ	Recovery- Recycling- potential				
w mater	sus	ıfac	ort:	sen	Use	ter	Repair	Sce	lsic	euo	iona	nstr	lou lou	sus	bro		Reuse-	Recovery Recycling potential				
aw s	12	anı	sp te 1	As		lair	œ	l de	Î Î	rati	- srat	0	der	Ë	ste	ت	2 ~	Re Po				
<u>«</u>		Σ	Transport from the gate to the site			2		ď	Re	Operational energy	Operational water	De			Waste processing							
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	С	1	C2	C3	C.	4	D				
X	Х	Х	Х	Х	MND	MND	MND	MNE	MNE	Х	MN	M C	۱D	Х	Х	Х	(Х				
RESU	JLTS	OF TH	IE LCA	- EN	VIRON	MENT	AL IM	PAC	T: One	piec	e of S	MAR'	Гair	Cylin	der	,						
	Pa	arameter			Unit	A1 -	А3	A4	ı	A5	В6		C2		СЗ		C4	D				
GWP	Globa	ıl warming	g potentia	[kg	CO ₂ -Eq.]	5.16E	+00	9.73E	-03 6	42E-02	5.39E	-02 9	.73E	-03 9.	72E-03	4.16	6E-02 -	5.26E-01				
ODP		tion poter			FC11-Eq.	2.72	E-09	1.42E	-12 2	.12E-13	3.69E	-11 1	.42E	-12 6.	65E-12	1.32	2E-13 -	2.91E-11				
AP '		spheric oz ation pote		nd	SO ₂ -Eq.]	3.37E	- 02	4.52E	05 1	.60E-05	2.54E	04 4	.52E	05 4	58E-05	1.50	9E-05 -	4.42E-03				
EP	C. tro	and wat ophication			O ₄) ³ - Eq.			8.61E		.48E-06	1.43E		.61E		58E-06			2.72E-04				
EF		mation pot	-	ĮKŲ (F	-O ₄) - Eq.	2.000	-03	0.01E	-00 1	400-00	1.43	-05 6	.016	-00 2.	30E-00	1.70	DE-00 -	2.726-04				
POCP	tro phot	tropospheric ozone [kg photochemical oxidants			Ethen Eq.]	2.04E	E-03	-1.07E	E-05 8	.39E-07	1.51E	-05 -1	-1.07E		72E-06	1.03E-06 -		2.82E-04				
ADPE	non	depletion fossil res	sources	Įĸģ	Sb Eq.]	3.71E	E-04	5.89E	-10 3	3.68E-09 7.46E-		6E-09 5.89E		-10 1.	.35E-09 3.82		2E-09 -	3.04E-04				
ADPF		oiotic depletion potential for fossil resources [MJ		[MJ]	6.24E	.24E+01 1.3		-01 2	2.55E-02		6.12E-01 1.3		-01 1.	1.10E-01 2		3E-02 -	5.62E+00					
RESU						RCE USE: One piece of SMARTair Cyli					ylinder											
											A5	В		-00			04					
Parame			Paramet			Unit	Jnit A1 - A		A4		AJ		0	C2	,	:3	C4	D				
PERE	E F		nergy car	rier		[MJ]	1.06E+0	.06E+01						-		-	-	-				
PERM	И re	Renewa sources	ble prima as mater			[MJ]	0.00E+00		-					-		-	-	-				
PER	Т	otal use	of renewa	able prir		[MJ]	1.06E+01		1.10E-02		.93E-03 1.75E-		-03 1.75E-01		1.75E-01 1.		75E-01 1.1		02 3.16	E-02	2.37E-03	-2.52E-01
PENR	E No	n renewa		ary ene	rgy as	[MJ]	8.13E+(-	<u> </u>	-	-	-				
PENR	M No	n renewa	energy carrier [WJ] 0.10E+01					_		_		_										
	Tot	mat al use of	erial utiliz non rene	zation wable r	rimary						0.055.00		- 64	4 505	04 4 70	F 64	0.445.63					
PENR	. 1	ene	rgy reso	ırces			8.13E+(1.50E-0									2-5.87E+00				
SM			secondar			[kg]	2.21E-0	_	0.00E+					1				0.00E+00				
RSF	He	e of rene se of non				[MJ]	0.00E+0	-	0.00E+	+		1						0.00E+00				
NRSI	F		fuels		-	[MJ]	0.00E+0	-	0.00E+			-			_			0.00E+00				
FW		Use of net fresh water				[m³]	4.64E-0		1.94E-(=-04	1.94E-	υ5 7.80	E-05	7.84E-05	-3.32E-03				
RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: One piece of SMARTair Cylinder																						
						LOV																
	piece			Cylii		Unit	A1 -	A3	A4	AS	;	В6		C2	СЗ		C4	D				
One	piece neter	of SM	ARTai	Cylineter	nder				A4 5.24E-06			B6 33E-04	5.2	C2 24E-06	C3		C4 2.26E-06					
Param HW	piece neter D VD	Hazai Non haz	Param rdous wa	eter ste disp	osed sposed	Unit	7.54E	-03 5	5.24E-06 2.59E-05	1.99E	-06 1. -03 3.	33E-04 09E-04	2.5	24E-06 59E-05	2.40E- 5.58E-	-05 -05	2.26E-06 5.92E-02	-2.35E-05 -1.75E-02				
Param HW NHW RW	D VD D	Hazai Non haz Radio	Param rdous wa zardous va	eter ste disp vaste di ste disp	oosed sposed	Unit [kg] [kg]	7.54E 2.71E 7.52E	-03 5 -01 2 -03 5	5.24E-06 2.59E-05 5.33E-06	1.99E 5.18E 1.21E	-06 1. -03 3. -06 1.	33E-04 09E-04 38E-04	2.5	24E-06 59E-05 33E-06	2.40E- 5.58E- 2.49E-	-05 -05 -05	2.26E-06 5.92E-02 1.10E-06	-2.35E-05 -1.75E-02 -9.90E-05				
Param HW NHW RW CRI	D VD D U	Hazar Non haz Radio	Param rdous wa zardous v active wa mponents	eter ste disp vaste disp ste disp	oosed sposed oosed use	Unit [kg] [kg] [kg]	7.54E 2.71E 7.52E 0.00E	-03 5 -01 2 -03 5 +00 0	5.24E-06 2.59E-05 5.33E-06 0.00E+00	1.99E 5.18E 1.21E 0.00E	-06 1. -03 3. -06 1. +00 0.	33E-04 09E-04 38E-04	2.5 5.3 0.0	24E-06 59E-05 33E-06 00E+00	2.40E- 5.58E- 2.49E- 0.00E-	-05 -05 -05 +00	2.26E-06 5.92E-02 1.10E-06 0.00E+00	-2.35E-05 -1.75E-02 -9.90E-05				
Param HW NHW RW CRI	piece neter D VD D U R	Hazai Non haz Radio Cor Ma	Param rdous wa zardous v active wa mponents terials fo	r Cylineter ste disp vaste disp ste disp for re- r recycli	oosed sposed coosed use	Unit [kg] [kg] [kg] [kg] [kg]	7.54E 2.71E 7.52E 0.00E	-03 5 -01 2 -03 5 +00 0	5.24E-06 2.59E-05 5.33E-06 0.00E+00	1.99E 5.18E 1.21E 0.00E 8.30E	-06 1. -03 3. -06 1. +00 0. -03 0.	33E-04 09E-04 38E-04 00E+00	5.3 0 0.0 0 0.0	24E-06 59E-05 33E-06 00E+00	2.40E- 5.58E- 2.49E- 0.00E- 2.21E-	-05 -05 -05 +00 (2.26E-06 5.92E-02 1.10E-06 0.00E+00	-2.35E-05 -1.75E-02 -9.90E-05 				
Param HW NHW RW CRI MFI	D VD D U R R	Hazar Non haz Radio Cor Ma	Param rdous wa zardous vactive wa mponents terials fo als for en	r Cylineter ste disp vaste disp ste disp for re-u r recycli ergy ree	nder posed sposed posed posed use ng poovery	Unit [kg] [kg] [kg] [kg] [kg] [kg]	7.54E 2.71E 7.52E 0.00E 0.00E	-03 5 -01 2 -03 5 +00 0 +00 0	5.24E-06 2.59E-05 5.33E-06 0.00E+00 0.00E+00	1.99E 5.18E 1.21E 0.00E 0.8.30E 0.00E	-06 1. -03 3. -06 1. +00 0. -03 0. +00 0.	33E-04 09E-04 38E-04 00E+00 00E+00	5.3 0 0.0 0 0.0 0 0.0	24E-06 59E-05 33E-06 00E+00 00E+00	2.40E- 5.58E- 2.49E- 0.00E- 2.21E- 0.00E-	-05 -05 -05 +00 -01	2.26E-06 5.92E-02 1.10E-06 0.00E+00 0.00E+00	-2.35E-05 -1.75E-02 -9.90E-05) -) -				
Param HW NHW RW CRI	D VD U R R R E	Hazar Non haz Radio Cor Ma Materia	Param rdous wa zardous v active wa mponents terials fo	etter ste disp vaste disp for re-u r recycli ergy rec trical en	oosed sposed coosed use ng covery ergy	Unit [kg] [kg] [kg] [kg] [kg]	7.54E 2.71E 7.52E 0.00E	6-03 5 6-01 2 6-03 5 6-00 0 0 0 0 0 0 0 0 0 0	5.24E-06 2.59E-05 5.33E-06 0.00E+00	1.99E 5.18E 1.21E 0 0.00E 0 8.30E 0 0.00E 1.15E	-06 1. -03 3. -06 1. +00 0. -03 0. +00 0. -01 0.	33E-04 09E-04 38E-04 00E+00	2.5 5.3 0 0.0 0 0.0 0 0.0 0 0.0	24E-06 59E-05 33E-06 00E+00	2.40E- 5.58E- 2.49E- 0.00E- 2.21E-	-05 -05 -05 +00 (-01 (+00 (2.26E-06 5.92E-02 1.10E-06 0.00E+00	-2.35E-05 -1.75E-02 -9.90E-05) -) -				

ASSA ABLOY

6. LCA: Interpretation

This chapter contains an interpretation of the Life Cycle Impact Assessment categories. Stated percentages in the whole interpretation are related to the overall life cycle, excluding credits (module D).

The production phase (modules A1-A3) contributes between 96% and 100% to the overall results for all the environmental impact assessment categories hereby considered. Within the production phase, the main contribution for all the impact categories is the production of steel, with app. 99%, mainly due to the energy consumption on this process. Brass, steel and

stainless steel account with app. 74% to the overall mass of the product, therefore, the impacts are in line with the mass composition of the product. The environmental impacts for the transport (A2) have a negligible impact within this stage.

In the end-of-life phase, there are loads and benefits (module D, negative values) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process (energy substitution).

7. Requisite evidence

Not applicable in this EPD.

8. References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013-04 www.bau-umwelt.de

PCR Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013 www.bau-umwelt.de

IBU PCR Part B

IBU PCR Part B: PCR Guidance-Texts for Building-Related Products and Services. From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU). Part B: Requirements on the EPD for Electronic Access Control Systems. www.bau-umwelt.com

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

ISO 14001:1999

Environmental Management System Certificate

ISO 9001:1994

Quality systems – Model for quality assurance in design, development, production, installation and servicing

ISO 14001:2004

Environmental management systems - Requirements with guidance for use (ISO 14001:2004 + Cor. 1:2009)

EN 15804

EN 15804:2012+A1:2014: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

EN 1634: 2000

Fire resistance tests for door and shutter assemblies

GaBi 6 2013

GaBi 6 2013: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, PE INTERNATIONAL AG, Leinfelden-Echterdingen, 1992-2013.

GaBi 6 2013D

GaBi 6 2013D: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, PE INTERNATIONAL AG, Leinfelden-Echterdingen, 1992-2013. http://documentation.gabi-software.com/

UNE-EN 1634:2000

Ensayos de resistencia al fuego y de control de humo de puertas y elementos de cerramiento de huecos, ventanas practicables y herrajes para la edificación. Parte 1: Ensayos de resistencia al fuego de puertas y elementos de cerramiento de huecos y ventanas practicables

EWC

European Waste Catalog

WEEE

Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE)

9. Annex

Results shown below were calculated using TRACI Methodology.

DESC	CRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DE											DECL	ARED)										
PROD	UCT	STAGE	ON PR	TRUCTI OCESS AGE		USE STAGE END OF LIFE STAGE							BEY S	EFITS AND OADS OND THE YSTEM JNDARYS									
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾	Operational energy use		Operational energy use		Refurbishment ⁷ Operational energy		Operational water	De-construction	demolition	Transport	Waste processing		Disposal Reuse-	Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B	5	В6	B7	0	21	C2	C3	C	:4	D				
Х	Х	Х	Х	Х	MND	MND	MND	MND	MN	ID	Χ	MND	М	ND	Х	Х)	<	Х				
RESU	LTS	OF TH	IE LC/	4 - EN	VIRON	MEN	TAL IMI	PACT	: de	clar	ed u	nit ar	nd p	rodı	ıct								
Parame	ter		Param	eter		J	Jnit	A1 - A	A3	A4	1	A 5		В6	(C2	C3	C4	D				
GWP			al warmir	• •			O ₂ -Eq.]	5.16E-	+00	9.73E	-03	6.42E-	02 5	.39E-	029.73	E-039	.72E-0	34.16E-0	2-5.26E-01				
ODP	D	epletion po	otential of ozone l		tospheric	[kg CF	C11-Eq.]	2.88E	-09	1.51E	-12	2.25E-	13 3	.92E-	111.51	E-127	.08E-1	21.41E-1	3-3.81E-11				
AP	A	cidification			and water	[kg S	O ₂ -Eq.]	3.21E	-02	5.54E	-05	1.89E-	05 2	.40E-	045.54	E-054	.34E-0	51.85E-0	5-4.26E-03				
EP			ophicatio	•		[kg	N-eq.]	1.48E	-03	3.68E	-06	6.65E-	07 1	.02E-	053.68	BE-061	.85E-0	69.66E-0	7-1.31E-04				
Smog		Ground-lev					O ₃ -eq.]	3.24E		1.03E		1.99E-											
Resource		Resour OF Th	ces – res					5.13E-		1.79E					02 1.79	E-02 7	.86E-0	33.13E-0	3-2.60E-01				
KESU		OF IF	IE LU <i>f</i>	4 - KE	SOUK	JE U	DE. OHE	piec	e oi	SIVI	AKI	all C	ymre	Jer									
Paramet			Parame			Unit	A1 -	A3	Α	A4 A5		B6 C		C2	C2 C3		C4	D					
PERE	Renewable primary energy as energy carrier						1.06E	E+01 -				-		-				-					
PERM	l Re	newable as n Total use	naterial ι	utilization	1	[MJ]	0.00E	0.00E+00				-		-	-								
PERT		en	ergy res	ources	•	[MJ]	1.06E	6E+01 1.1		0E-02 1.93E-0		BE-03 1.75E-01		5E-01 1.10E-02		-02 3.1	I6E-02	2.37E-03	-2.52E-01				
PENRE	-		energy c	arrier		[MJ]	8.13E	+01	-			-		-					-	-	-		
PENRI	и I г	Non renew ma	vable prii aterial uti		ergy as	[MJ]	0.00E	E+00 -			-	-				-	-	-					
PENR	Г	otal use o	f non rer nergy res		primary	[MJ]	8.13E	+01	1.50	50E-01 2.85E-02		9.58	E-01	1.50E	-01 1.7	73E-01	3.11E-02	-5.87E+00					
SM			seconda		rial	[kg]	2.21	E-01	0.00	E+00	0.00	00E+00 0.0		E+00	0.00E	+000.0	0E+00	0.00E+0	0.00E+00				
RSF	ι	Jse of ren	ewable s	seconda	ry fuels	[MJ]	0.00E		0.00	E+00	0.00	E+00	0.00	E+00	0.00E	+000.0	0E+00	0.00E+0	0.00E+00				
NRSF		Use of no	n renewa		ondary	[MJ]	0.00E	+00	0.00	E+00	0.00	E+00	0.00	E+00	0.00E	+000.0	0E+00	0.00E+0	0.00E+00				
FW	+	Use	of net fre		er	[m ³]	4.64			E-05			4.321						-3.32E-03				
		OF TH				FLOV	VS AND) WA	STE	CA	ΤEG	ORIE	S:						<u>'</u>				
Parame	eter		Paran	neter		Unit	A1 - A3	A	4	ļ	\5	Ве	5	С	2	СЗ		C4	D				
HWE)	Hazaı	rdous wa	ste disp	osed	[kg]	7.54E-03	5.24	E-06	1.99	E-06	1.33E	-04	5.24	E-06	2.40E-	-05 2	.26E-06	-2.35E-05				
NHW	D	Non haz	zardous	waste di	sposed	[kg]	2.71E-01	2.59	E-05	5.18	E-03	3.09E	-04	2.59	E-05	5.58E-	-05 5	.92E-02	-1.75E-02				
RWE)	Radio	active wa	aste disp	osed	[kg]	7.52E-03	5.331	E-06	1.21	E-06	1.38E	-04	5.33	E-06	2.49E-	-05 1	.10E-06	-9.90E-05				
CRL	1		nponents			- 0-	0.00E+00			0.00	E+00		_	0.001		0.00E+		.00E+00	-				
MFR	-+		terials fo				0.00E+00	+			E-03	+				2.21E-		.00E+00	-				
MER	-+		als for en			1. 0.	0.00E+00	 			E+00	1				0.00E+		.00E+00	-				
EEE			rted elec		•••		0.00E+00	+			E-01	0.00E		0.001		0.00E+		.17E-02	-				
EET	T Exported thermal energy				[MJ]	0.00E+00	0.00	=+00	3.17	E-01	0.00E	+00	0.001	E+00	0.00E+	+00 1	.97E-01	-					

Publisher

Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin

Germany

+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 Tel Fax Mail

info@bau-umwelt.com Web www.bau-umwelt.com

Programme holder

Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany

Tel Fax Mail

+49 (0)30 - 3087748- 0 +49 (0)30 – 3087748 - 29 info@bau-umwelt.com Web www.bau-umwelt.com

Author of the Life Cycle Assessment PE INTERNATIONAL AG

Hauptstraße 111

70771 Leinfelden-Echterdingen Germany

Tel +49 711 34 18 17 22 Fax +49 711 34 18 17 25

consulting@pe-international.com www.pe-international.com Mail Web

Owner of the Declaration

TESA ASSA ABLOY Bº Ventas, 35 20305 Irun, Gipuzkoa **SPAIN**

Tel +34 943 669 100 Web www.tesa.es